

SigNals Of Opportunity: P-band Investigation (SNOOPI) 2017 InVEST Award

Presenter & PI: James L Garrison

Purdue University, West Lafayette, IN

Team Members:

Justin Mansell, Benjamin Nold, Seho Kim - *Purdue University, West Lafayette, IN* Manuel Vega, Roger Banting, Juan C. Raymond, Rajat Bindlish, Jeffrey Piepmeier, Patrick D. Brown - *NASA Goddard Space Flight Center, Greenbelt, MD* Rashmi Shah, Kameron Larsen - *NASA Jet Propulsion Laboratory, Pasadena, CA* Mehmet Kurum, Dylan Boyd - *Mississippi State University*

Motivation: P-band Remote Sensing

Root Zone Soil Moisture (RZSM)

Snow Water Equiv. (SWE)

SNOPI Why is P-band Difficult?

Signals of Opportunity

P-Band SoOp Heritage

IIP-13 Award: Signals of Opportunity Airborne Demonstrator (SoOp-AD)

P-Band SoOp Heritage

Snow observations (JPL RTD)

[Shah, et al., 10.1109/LGRS.2016.2636664]

Necessity of In-Space Validation

- 1. Validate **link budget** from orbital altitudes and speeds to quantify uncertainty in reflectivity and phase
- 2. Quantify **RFI effect** from space (broad field of view, global distribution of measurements)
- 3. Demonstrate model prediction and instrument tracking for orbital delay and Doppler with non-cooperative transmitter

Spacecraft Design

SNOPI Mission Design: In-Situ Site Matchups

- SNOOPI will take advantage of the different validation sites located in different biomes (both core and sparse networks).
- SNOOPI observations inside the watershed will be compared to in situ observations
- SNOOPI observations will be compared to the sparse and model outputs to cover a wide range of biomes over CONUS

CVS	Location	Climate Regime	Land Cover Type
Walnut Gulch, ID	Arizona, USA	Arid	Shrub open
TxSON, TX	Texas, USA	Temperate	Grasslands
Fort Cobb, OK	Oklahoma, USA	Temperate	Grasslands/Croplands
Little Washita, OK	Oklahoma, USA	Temperate	Grasslands
South Fork, IA	Iowa, USA	Humid Continental	Row Crop
St. Joseph's, IN	Indiana, USA	Humid Continental	Row Crop
Little River, GA	Georgia, USA	Temperate	Cropland/natural mosaic
Yanco	Australia	Arid	Croplands

Mission Design

SMAP Cal/Val Site Matchups (ISS orbit - 1 year):

SNOPI Mission Design: Snow Coverage

SNOPI Mission Design: CONUS Mapping

Data Validation Plan

Instrument Science

• Single antenna – Autocorrelation

Two antennas with high isolation – not feasible with P-band on CubeSat sized platform

Instrument Science: Simulated Retrievals

SN®opi Instrument Science: Attitude Optimization

SNOOPI Attitude will be set to optimize antenna gain:

Maximize G_D

Constraint $|G_D - G_R| < 3dB$

Slew rate and star tracker pointing constraints

Attitude knowledge better than 0.1 deg

SN [Instrument Science: Attitude Optimization

Example optimization of an overpass over South Fork SMAP Cal/Val site:

Instrument Science: Delay-Doppler Map

- Test orbit prediction using CYGNSS GPS E²⁵
 - Orbit error mapped to specular point position error & delay/Doppler uncertainty
 - Includes terrain model
 - SoOp Source position based on publicly available TLEs
- 7-day propagation error:
 - < 9 km specular point position</p>
 - 20 μs delay
 - < 100 Hz Doppler</p>
- Source (MUOS) position error being studied

SNOPI Instrument Science: Delay-Doppler Map

	255 MHz	370 MHZ
Channel Bandwidth	25 KHz	5 MHZ
Coherent Integration Time (minimum)	1 ms	1 ms
Equiv. "Chip" length	12 km	60 m
Delay Resolution	0.05 chip	0.25 chip
Doppler Resolution	500 Hz	500 Hz
Delay Bins	5	200
Doppler Bins	3	3
Channels	5	1
Bits/DDM	2400	19,200

Delay-Doppler Impact on Error Budget

Science Operation Center (SOC)

Science Operations Center (SOC)

• SOC function: Generate attitude control commands for optimal antenna pointing

EIRP/Ambiguity Function Monitor

- 50 MHz recording bandwidth
- COTS sky scanning antenna positioner system
- Temperature controlled enclosure

Schedule and Milestones

Bus Integration	Aug 2021	
Instrument I&T	Sep 2021	
Environmental Test	Jan 2022	
Ship to Nanoracks	Feb 2022	
Launch	Apr 2022 (TBD)	
ISS Deployment	Jun 2022 (TBD)	
Commissioning	Jul 2022	
Science Mission	Jul 2022-Apr 2023	
Final Report/Closeout	May 2023	

Acknowledgement

This work was supported by NASA Grant 80NSSC18K1524, "Signals of Opportunity P-band Investigation (SNOOPI)"

BACKUP

Mission Design

Expected reflectivity observations

9 SMAP Cal/Val sites, SCoBi* Forward model Reflectivity

^{*}http://impress.ece.msstate.edu/impress-lab/software/scobi/

Coverage-SNOW

Snow Coverage: Modeling Orbital Decay

(a) Launch in January

(c) Launch in August